Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.140
Filtrar
1.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257390

RESUMO

The textile industry produces high volumes of colored effluents that require multiple treatments to remove non-adsorbed dyes, which could be recalcitrant due to their complex chemical structure. Most of the studies have dealt with the biodegradation of mono or diazo dyes but rarely with poly-azo dyes. Therefore, the aim of this paper was to study the biodegradation of a four azo-bond dye (Sirius grey) and to optimize its decolorization conditions. Laccase-containing cell-free supernatant from the culture of a newly isolated fungal strain, Coriolopsis gallica strain BS9 was used in the presence of 1-hydroxybenzotriazol (HBT) to optimize the dye decolorization conditions. A Box-Benken design with four factors, namely pH, enzyme concentration, HBT concentration, and dye concentration, was performed to determine optimal conditions for the decolorization of Sirius grey. The optimal conditions were pH 5, 1 U/mL of laccase, 1 mM of HBT, and 50 mg/L of initial dye concentration, ensuring a decolorization yield and rate of 87.56% and 2.95%/min, respectively. The decolorized dye solution showed a decrease in its phytotoxicity (Germination index GI = 80%) compared to the non-treated solution (GI = 29%). This study suggests that the laccase-mediator system could be a promising alternative for dye removal from textile wastewater.


Assuntos
Compostos Azo , Lacase , Polyporaceae , Compostos Azo/toxicidade , Biodegradação Ambiental , Corantes/toxicidade , Poli A
2.
Environ Sci Pollut Res Int ; 31(1): 657-667, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015401

RESUMO

Azo dyes find applications across various sectors including food, pharmaceuticals, cosmetics, printing, and textiles. The contaminating effects of dyes on aquatic environments arise from toxic effects caused by their long-term presence in the environment, buildup in sediments, particularly in aquatic species, degradation of pollutants into mutagenic or mutagenic compounds, and low aerobic biodegradability. Therefore, we theoretically propose the first steps of the degradation of azo dyes based on the interaction of hydroperoxyl radical (•OOH) with the dye. This interaction is studied by the OC and ON mechanisms in three azo dyes: azobenzene (AB), disperse orange 3 (DO3), and disperse red 1 (DR1). Rate constants calculated at several temperatures show a preference for the OC mechanism in all the dyes with lower activation energies than the ON mechanism. The optical properties were calculated and because the dye-•OOH systems are open shell, to verify the validity of the results, a study of the spin contamination of the ground [Formula: see text] and excited states [Formula: see text] was previously performed. Most of the excited states calculated are acceptable as doublet states. The absorption spectra of the dye-•OOH systems show a decrease in the intensity of the bands compared to the isolated dyes and the appearance of a new band of the type π → π* at a longer wavelength in the visible region, achieving up to 868 nm. This demonstrates that the reaction with the •OOH radical could be a good alternative for the degradation of the azo dyes.


Assuntos
Compostos Azo , Poluentes Químicos da Água , Compostos Azo/toxicidade , Corantes/toxicidade , Alérgenos , Mutagênicos/toxicidade , Poluentes Químicos da Água/toxicidade
3.
Biodegradation ; 35(2): 173-193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37656273

RESUMO

Textile industries release major fraction of dyestuffs in effluents leading to a major environmental concern. These effluents often contain more than one dyestuff, which complicates dye degradation. In this study ten reactive dyes (Reactive Yellow 145, Reactive Yellow 160, Reactive Orange 16, Reactive Orange 107, Reactive Red 195, Reactive Blue 21, Reactive Blue 198, Reactive Blue 221, Reactive Blue 250, and Reactive Black 5) that are used in textile industries were subjected to biodegradation by a bacterial consortium VITPBC6, formulated in our previous study. Consortium VITPBC6 caused single dye degradation of all the mentioned dyes except for Reactive Yellow 160. Further, VITPBC6 efficiently degraded a five-dye mixture (Reactive Red 195, Reactive Orange 16, Reactive Black 5, Reactive Blue 221, and Reactive Blue 250). Kinetic studies revealed that the five-dye mixture was decolorized by VITPBC6 following zero order reaction kinetic; Vmax and Km values of the enzyme catalyzed five-dye decolorization were 128.88 mg L-1 day-1 and 1003.226 mg L-1 respectively. VITPBC6 degraded the dye mixture into delta-3,4,5,6-Tetrachlorocyclohexene, sulfuric acid, 1,2-dichloroethane, and hydroxyphenoxyethylaminohydroxypropanol. Phytotoxicity, cytogenotoxicity, microtoxicity, and biotoxicity assays conducted with the biodegraded metabolites revealed that VITPBC6 lowered the toxicity of five-dye mixture significantly after biodegradation.


Assuntos
Compostos Azo , Bactérias , Naftalenossulfonatos , Compostos Organometálicos , Cinética , Compostos Azo/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Corantes/metabolismo , Corantes/toxicidade , Têxteis , Indústria Têxtil
4.
J Insect Physiol ; 153: 104600, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38145823

RESUMO

Prolonged exposure to food dyes, even for those considered safe for consumption, are known to have toxic effects. However, we lack a proper understanding of the underlying compounds that are responsible for the observed toxicity. Here, we tested the toxic effects of three common commercially available natural food dyes (red, green, blue), and their main ingredients (turmeric and spirulina), on Drosophila melanogaster oviposition, larval development, and larval foraging behaviour. Larval development and egg-to-adult survival was significantly impacted by blue and green dyes. These effects were recapitulated when flies were fed with increasing concentrations of turmeric and spirulina, suggesting that turmeric is a toxic component of the food dye. Red dye, which contains neither turmeric or spirulina, had little impact on fly health and behaviour. Green and blue food dyes decreased egg laying, an effect similar to that observed in increasing concentrations of turmeric and, to a lesser extent, spirulina. When given a choice, larvae preferred to feed as follows: control > red > blue > green diet patches, a pattern inversely correlating with the previously observed toxicity. Our results show that, despite turmeric being often considered a super food, it can have toxic effects that the impact health of organisms.


Assuntos
Drosophila , Spirulina , Feminino , Animais , Corantes/toxicidade , Drosophila melanogaster , Curcuma
5.
Environ Pollut ; 343: 123226, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159638

RESUMO

Azo dyes, the most common synthetic dyes used in the textile industry, are known xenobiotic compounds and recalcitrant to conventional degradation treatments. As consequence, such contaminants are often discharged into the effluents, treating aquatic ecosystems. Among several processes, the use of zero valent iron (ZVI) represents a suitable alternative to degrade organic molecules containing azo bonds. However, its applications are limited by corrosion and loss of reactivity over the time. To overcome these constraints, ZVI has been coupled to a suitable semiconductor (ZnS) to get a catalytic composite (ZVI-ZnS) active under UV light. The present work deals with the degradation of acid orange (AO7), used as model azo dye, by UV/ZVI-ZnS, as one step treatment and in combination with an adsorption process by biochar. The influence of ZVI-ZnS concentration (0.25, 0.5, 1 and 2 g/L) and reaction time (0-160 min) on degradation of AO7 were investigated. Intermediates formation was monitored by ESI-FT-ICR-MS analysis and the effluent toxicity was assessed by using Artemia franciscana. The experimental results showed that the UV/ZVI-ZnS process at 1 g/L of catalyst allowed to achieve a removal of AO7 up to 97% after 10 min. An increase of the dye relative concentrations as well as the toxicity related to intermediates formations has been observed for treatment time higher than 10 min. The total removal of AO7 together with effluent toxicity reduction was obtained only after the combined treatment (UV/ZVI-ZnS + biochar).


Assuntos
Carvão Vegetal , Ferro , Poluentes Químicos da Água , Ferro/química , Compostos Azo/química , Ecossistema , Raios Ultravioleta , Poluentes Químicos da Água/análise , Corantes/toxicidade , Corantes/química
6.
Braz J Biol ; 83: e277577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055583

RESUMO

Amazonian strains of Cyathus spp. and Geastrum spp. were studied for the ability to discolor the trypan blue azo dye and reduce its toxicity. Discoloration of trypan blue dye (0.05%) was evaluated in solid and aqueous medium over different periods. The reduction of dye toxicity after treatment was assessed by seed germination and the development of lettuce seedlings (Lactuca sativa L.) and toxicity test in Artemia salina (L.) larvae. All evaluated strains showed the potential to reduce the color intensity of trypan blue dye. Cyathus strains reached 96% discoloration, and C. albinus and C. limbatus also reduced dye toxicity. Geastrum strains showed a high efficiency degree in color reduction, reaching 98% discoloration, however, the by-products generated during the process presented toxicity and require further investigation. For the first time, Amazonian strains of gasteroid fungi degrading trypan blue are reported, some even reducing its toxicity. Thus, making them promising sources of enzymes of interest to bioremediation scenarios involving synthetic dyes.


Assuntos
Basidiomycota , Azul Tripano , Compostos Azo/toxicidade , Compostos Azo/metabolismo , Biodegradação Ambiental , Basidiomycota/metabolismo , Fungos , Corantes/toxicidade
7.
Food Chem Toxicol ; 182: 114116, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923193

RESUMO

Spices are contaminated with aflatoxins (AFs) and Sudan dyes which are classified as class Group 1 and Group 3 human carcinogens by the International Agency for Research on Cancer (IARC) respectively and their prolonged exposure may raise a human health concern. A total of 474 samples of red chili and turmeric were collected from Lahore city and were subjected to quantitative and qualitative AFs and Sudan dyes analysis by thin layer chromatography (TLC) respectively. The number of red chili and turmeric samples with ≥10 µg/kg of total AFs (European Union standard limit) were 70% and 33% respectively and considered unfit for human consumption. The presence of Sudan dyes in red chili and turmeric samples was 67% and 27% respectively. The mean estimated daily intake (EDI) among females and males was 0.0019 µg/kg bw/day, 0.0012 µg/kg bw/day for red chili, and 0.0008 µg/kg bw/day, 0.0006 µg/kg bw/day for turmeric respectively. The mean value of margin of exposure (MOE) among females and males for ingestion of AFs-contaminated red chili and turmeric was 210.25, 332.13, 501.02, and 699.31 respectively. Therefore, the current study demands a continuous monitoring plan and the implementation of novel techniques to enhance the product's quality and protect public health.


Assuntos
Aflatoxinas , Corantes , Humanos , Corantes/toxicidade , Aflatoxinas/toxicidade , Aflatoxinas/análise , Curcuma , Paquistão , Contaminação de Alimentos/análise , Cromatografia Líquida de Alta Pressão/métodos
8.
Food Chem Toxicol ; 182: 114108, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890762

RESUMO

Azobenzene disperse dyes are the fastest-growing category of commercial dyestuffs and have been found in indoor house dust and in children's polyester apparel. Azobenzene disperse dyes are implicated as potentially allergenic; however, little experimental data is available on allergenicity of these dyes. Here, we examine the binding of azobenzene disperse dyes to nucleophilic peptide residues as a proxy for their potential reactivity as electrophilic allergenic sensitizers. The Direct Peptide Reactivity Assay (DPRA) was utilized via both a spectrophotometric method and a high-performance liquid chromatography (HPLC) method. We tested dyes purified from commercial dyestuffs as well as several known transformation products. All dyes were found to react with nucleophilic peptides in a dose-dependent manner with pseudo-first order kinetics (rate constants as high as 0.04 h-1). Rates of binding reactivity were also found to correlate to electrophilic properties of dyes as measured by Hammett constants and electrophilicity indices. Reactivities of polyester shirt extracts were also tested for DPRA activity and the shirt extracts with high measured abundances of azobenzene disperse dyes were observed to induce greater peptide reactivity. Results suggest that azobenzene disperse dyes may function as immune sensitizers, and that clothing containing these dyes may pose risks for skin sensitization.


Assuntos
Corantes , Peptídeos , Criança , Humanos , Corantes/toxicidade , Peptídeos/química , Pele/metabolismo , Alérgenos/toxicidade , Alérgenos/química , Poliésteres
9.
J Hazard Mater ; 460: 132450, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708651

RESUMO

Over decades, synthetic dyes have become increasingly dominated by azo dyes posing a significant environmental risk due to their toxicity. Microalgae-based systems may offer an alternative for treatment of azo dye effluents to conventional physical-chemical methods. Here, microalgae were tested to decolorize industrial azo dye wastewater (ADW). Chlorella sorokiniana showed the highest decolorization efficiency in a preliminary screening test. Subsequently, the optimization of the experimental design resulted in 70% decolorization in a photobioreactor. Tolerance of this strain was evidenced using multiple approaches (growth and chlorophyll content assays, scanning electron microscopy (SEM), and antioxidant level measurements). Raman microspectroscopy was employed for the quantification of ADW-specific compounds accumulated by the microalgal biomass. Finally, RNA-seq revealed the transcriptome profile of C. sorokiniana exposed to ADW for 72 h. Activated DNA repair and primary metabolism provided sufficient energy for microalgal growth to overcome the adverse toxic conditions. Furthermore, several transporter genes, oxidoreductases-, and glycosyltransferases-encoding genes were upregulated to effectively sequestrate and detoxify the ADW. This work demonstrates the potential utilization of C. sorokiniana as a tolerant strain for industrial wastewater treatment, emphasizing the regulation of its molecular mechanisms to cope with unfavorable growth conditions.


Assuntos
Chlorella , Descoloração da Água , Chlorella/genética , Perfilação da Expressão Gênica , Corantes/toxicidade , Compostos Azo
10.
Chemosphere ; 343: 140174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741366

RESUMO

The concept of sustainability has gained prominence in recent years, enhancing the need to develop products that are less harmful to the environment. Dyes are used by various industrial sectors and have a lot of market value; they are used on a large scale mainly by the textile industry that uses large volumes of water and is one of the main contributors to the contamination of water bodies. Some natural compounds, especially anthraquinones are re-emerging as possible alternatives to synthetic dyes, some of which are known for their toxic and/or mutagenic effects. The BioColour project (https://biocolour.fi/) which is interested in promoting the development of new alternative molecules to synthetic dyes, provided us highly purified anthraquinone dyes dermocybin and dermorubin (>98% purity) extracted from a specie of fungus Cortinarius sanguineus. Dyes were tested for their acute and chronic toxicity using different aquatic organisms. Dermorubin was not toxic to any of the organisms tested for the highest test concentration of 1 mg L-1 and it was the most promising dye. Dermocybin was toxic to Daphnia similis (EC50 = 0.51 mg L-1), Ceriodaphnia dubia (IC10 = 0.13 mg L-1) and Danio rerio embryos (extrapolated LC50 = 2.44 mg L-1). A safety limit, i.e, predicted no-effect concentration (PNEC) of 0.0026 mg L-1 was derived based on the toxicity of dermocybin. The PNEC value can be used to provide hazard information for future application in commercial dyeing processes. Then, we compared the toxicity of dermocybin and dermorubin with ecotoxicity data available in the literature on other anthraquinone dyes of natural and synthetic origin. Some natural dyes can be as toxic as synthetic ones, or more toxic when chronic effects are considered. Despite natural dyes being used since centuries past, there are few ecotoxicological studies available. This study is designed to help develop a more comprehensive understanding of their toxicological properties.


Assuntos
Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Daphnia , Peixe-Zebra , Corantes/toxicidade , Antraquinonas/toxicidade , Água
11.
Langmuir ; 39(33): 11610-11620, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37605815

RESUMO

Nanocomposites such as graphene oxide (GO) have been incorporated into hydrogels to enhance conventional hydrogels' properties and develop new functions. Unique and strong molecular interactions between GO and low molecular weight gelators allow the fabrication of various functional hydrogels suitable for different applications. In the present study, we report a stable and soft nanocomposite hydrogel comprising a pyrene-based chiral amphipath having an amino acid (l-phenylalanine) core with pendant oligo-oxyethylene hydrophilic chains and GO. The mechanical and viscoelastic properties of the nanocomposite hydrogel were thoroughly studied using various spectroscopic, microscopic, and mechanical techniques. Even without GO, native hydrogels could form a self-supported thermoreversible and thixotropic hydrogel composed of the fibrillar network. Unlike native hydrogels, the morphological investigation of nanocomposite gels shows the presence of cross-linked nanosheet-like structures. The combined effect of π-π stacking and H-bonding interactions is the driving force for the formation of such composite hydrogels. Moreover, the nanocomposite hydrogels possess significantly superior mechanical stiffness than the native hydrogels. Interestingly, the thixotropic properties observed with the parent gel were retained even in the presence of carbon nanomaterials (GO). The nanocomposite hydrogel could be employed in the optical sensing of a biogenic polyamine, spermine, resulting in a visible gel-to-sol transition. The superior electrostatic interaction between the GOs and spermine molecules might have led to the release of entrapped fluorogenic dyes from the hydrogel network and a turn-on emission response. The sensory system was employed to analyze spermine content in human urine samples and decomposed food items. A gel-coated paper strip was also developed for onsite detection of the spermine. The nanocomposite hydrogel was further utilized to remove toxic organic dyes such as methylene blue (MB) and rhodamine B (RhB) from the aqueous media. The nanocomposite hydrogel thus showed excellent dye removal capabilities and was also found to be recyclable. Calculations of different mechanical parameters suggest that the dye removal efficiency of the nanocomposite hydrogel was better for MB than for RhB.


Assuntos
Nanocompostos , Espermina , Humanos , Nanogéis , Águas Residuárias , Hidrogéis , Nanocompostos/toxicidade , Corantes/toxicidade
12.
Food Chem Toxicol ; 178: 113935, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37429408

RESUMO

Azo dyes, including Tartrazine, Sunset Yellow, and Carmoisine, are added to foods to provide color, but they have no value with regard to nutrition, food preservation, or health benefits. Because of their availability, affordability, stability, and low cost, and because they provide intense coloration to the product without contributing unwanted flavors, the food industry often prefers to use synthetic azo dyes rather than natural colorants. Food dyes have been tested by regulatory agencies responsible for guaranteeing consumer safety. Nevertheless, the safety of these colorants remains controversial; they have been associated with adverse effects, particularly due to the reduction and cleavage of the azo bond. Here, we review the features, classification, regulation, toxicity, and alternatives to the use of azo dyes in food.


Assuntos
Compostos Azo , Corantes de Alimentos , Compostos Azo/toxicidade , Compostos Azo/análise , Tartrazina/toxicidade , Tartrazina/análise , Corantes/toxicidade , Alimentos , Indústria Alimentícia , Corantes de Alimentos/toxicidade
13.
Food Chem Toxicol ; 178: 113932, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37451600

RESUMO

Azo compounds are widely distributed synthetic chemicals in the modern world. Their most important applications are as dyes, but, in addition, several azo compounds are used as pharmaceuticals. Ingested azo compounds can be reduced by the action of bacteria in the gut, where the oxygen tension is low, and the development of microbiome science has allowed more precise delineation of the roles of specific bacteria in these processes. Reduction of the azo bond of an azo compound generates two distinct classes of aromatic amine metabolites: the starting material that was used in the synthesis of the azo compound and a product which is formed de novo by metabolism. Reductive metabolism of azo compounds can have toxic consequences, because many aromatic amines are toxic/genotoxic. In this review, we discuss aspects of the development and application of azo compounds in industry and medicine. Current understanding of the toxicology of azo compounds and their metabolites is illustrated with four specific examples - Disperse Dyes used for dyeing textiles; the drugs phenazopyridine and eltrombopag; and the ubiquitous food dye, tartrazine - and knowledge gaps are identified. SUBMISSION TO: FCT VSI: Toxicology of Dyes.


Assuntos
Compostos Azo , Corantes , Compostos Azo/toxicidade , Compostos Azo/química , Corantes/toxicidade , Corantes/química , Tartrazina , Bactérias/metabolismo , Aminas/química
14.
J Hazard Mater ; 455: 131503, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37150098

RESUMO

Growing textile industry is a major global concern, owing to the presence of recalcitrant hazardous pollutants, like synthetic dyes in discharged effluents. To explore new bioresources for mycoremediation, a high laccase-producing novel white-rot fungus (WRF), Trametes flavida WTFP2, was employed. T. flavida is an underexplored member of Polyporales. Using bioinformatic tools, 8 different cis-acting RNA elements were identified in the 5.8 S ITS gene sequence, where CRISPR (CRISPR-DR15), sRNA (RUF1), and snoRNA (ceN111) are uniquely present. Molecular docking was adopted to predict the catalytic interaction of chosen toxic diazo colorant, Congo red (CR), with four dye-degrading enzymes (laccase, lignin peroxidase, azoreductase, and aryl alcohol oxidase). With 376.41 × 103 U/L laccase production, novel WRF exhibited dye-decolorization potential. WTFP2 effectively removed 99.48 ± 0.04% CR (100 mg/L) and demonstrated remarkable recyclability and persistence in consecutive remediation trials. Mycelial dye adsorption was not only substantial driver of colorant elimination; decolorization using active T. flavida was regulated by enzymatic catalysis, as outlined by in-vitro growth, induction of extracellular enzymes, and FESEM. Fifteen metabolites were identified using HRLCMS-QTOF, and novel CR degradation pathway was proposed. Furthermore, microbial and phyto-toxicity tests of metabolites suggested complete detoxification of toxic dye, making the process clean, green, and economically sustainable.


Assuntos
Vermelho Congo , Trametes , Vermelho Congo/metabolismo , Lacase/genética , Lacase/metabolismo , Simulação de Acoplamento Molecular , Biomineralização , Biodegradação Ambiental , Corantes/toxicidade , Corantes/metabolismo
15.
Environ Int ; 176: 107952, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37224677

RESUMO

BACKGROUND: Azo dyes are used in textiles and leather clothing. Human exposure can occur from wearing textiles containing azo dyes. Since the body's enzymes and microbiome can cleave azo dyes, potentially resulting in mutagenic or carcinogenic metabolites, there is also an indirect health concern on the parent compounds. While several hazardous azo dyes are banned, many more are still in use that have not been evaluated systematically for potential health concerns. This systematic evidence map (SEM) aims to compile and categorize the available toxicological evidence on the potential human health risks of a set of 30 market-relevant azo dyes. METHODS: Peer-reviewed and gray literature was searched and over 20,000 studies were identified. These were filtered using Sciome Workbench for Interactive computer-Facilitated Text-mining (SWIFT) Review software with evidence stream tags (human, animal, in vitro) yielding 12,800 unique records. SWIFT Active (a machine-learning software) further facilitated title/abstract screening. DistillerSR software was used for additional title/abstract, full-text screening, and data extraction. RESULTS: 187 studies were identified that met populations, exposures, comparators, and outcomes (PECO) criteria. From this pool, 54 human, 78 animal, and 61 genotoxicity studies were extracted into a literature inventory. Toxicological evidence was abundant for three azo dyes (also used as food additives) and sparse for five of the remaining 27 compounds. Complementary search in ECHA's REACH database for summaries of unpublished study reports revealed evidence for all 30 dyes. The question arose of how this information can be fed into an SEM process. Proper identification of prioritized dyes from various databases (including U.S. EPA's CompTox Chemicals Dashboard) turned out to be a challenge. Evidence compiled by this SEM project can be evaluated for subsequent use in problem formulation efforts to inform potential regulatory needs and prepare for a more efficient and targeted evaluation in the future for human health assessments.


Assuntos
Compostos Azo , Carcinógenos , Exposição Ambiental , Humanos , Compostos Azo/toxicidade , Carcinógenos/análise , Carcinógenos/toxicidade , Corantes/toxicidade , Corantes/química , Mutagênicos/toxicidade , Mutagênicos/análise , Têxteis
16.
Environ Res ; 231(Pt 1): 116111, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178746

RESUMO

The physicochemical attributes of textile effluents collected from secondary treatment stage was investigated in this study and also assess the biosorption potential of membrane immobilized Bacillus cereus and free form of Bacillus cereus on textile effluent through bioreactor model study to find a sustainable solution to manage the textile effluent as vital need. Furthermore, the phytotoxicity and cytotoxicity nature of treated and untreated textile effluents on Vigna mungo and Artemia franciscana larvae under laboratory conditions as a novel approach. The textile effluent physicochemical parameter analysis results showed that the properties such as colour (Hazen unit), pH, turbidity, As, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Cd, Cl, Cr, Cu, Hg, Ni, Pb, SO42-, and Zn were beyond the acceptable limits. Bacillus cereus immobilized on a polyethylene membrane eliminated greater amounts of dye (25.0 ± 1.3, 56.5 ± 1.8, 57.18 ± 1.5, and 54.34 ± 1.7 Hazen unit from An1, Ae2, Ve3, and So4 respectively) and pollutants (As: 0.9-2.0, Cd: 6-8, Cr: 300-450, Cu: 5-7, Hg: 0.1-0.7, Ni: 8-14, Pb: 4-5, and Zn: 4-8 mg L-1) from textile effluent in a week of biosorption investigation using a bioreactor model (batch type) compared to a free form of B. cereus on textile effluent. The phytotoxicity and cytotoxicity study results revealed that the membrane immobilized B. cereus treated textile effluent exposure showed reduced phytotoxicity and minimal cytotoxicity (including mortality) percentage compared with free form B. cereus treated and untreated textile effluents. These entire results conclude that the membrane immobilized B. cereus may considerably minimize/detoxify the harmful pollutants from the textile effluents. A large scale level biosorption approach need to be performed to validate the maximum pollutants removing potential of this membrane immobilized bacteria species and optimal conditions for effective remediation.


Assuntos
Poluentes Ambientais , Mercúrio , Vigna , Poluentes Químicos da Água , Animais , Bacillus cereus , Artemia , Cádmio/análise , Chumbo/análise , Sementes/química , Poluentes Ambientais/análise , Mercúrio/análise , Têxteis , Indústria Têxtil , Biodegradação Ambiental , Poluentes Químicos da Água/análise , Corantes/toxicidade , Corantes/química
17.
Environ Res ; 231(Pt 2): 116142, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217122

RESUMO

The present study identifies and analyses the degraded products of three azo dyes (Reactive Orange 16, Reactive Red 120, and Direct Red 80) and proffers their in silico toxicity predictions. In our previously published work, the synthetic dye effluents were degraded using an ozonolysis-based Advanced Oxidation Process. In the present study, the degraded products of the three dyes were analysed using GC-MS at endpoint strategy and further subjected to in silico toxicity analysis using Toxicity Estimation Software Tool (TEST), Prediction Of TOXicity of chemicals (ProTox-II), and Estimation Programs Interface Suite (EPI Suite). Several physiological toxicity endpoints, such as hepatotoxicity, carcinogenicity, mutagenicity, cellular and molecular interactions, were considered to assess the Quantitative Structure-Activity Relationships (QSAR) and adverse outcome pathways. The environmental fate of the by-products in terms of their biodegradability and possible bioaccumulation was also assessed. Results of ProTox-II suggested that the azo dye degradation products are carcinogenic, immunotoxic, and cytotoxic and displayed toxicity towards Androgen Receptor and Mitochondrial Membrane Potential. TEST results predicted LC50 and IGC50 values for three organisms Tetrahymena pyriformis, Daphnia magna, and Pimephales promelas. EPISUITE software via the BCFBAF module surmises that the degradation products' bioaccumulation (BAF) and bioconcentration factors (BCF) are high. The cumulative inference of the results suggests that most degradation by-products are toxic and need further remediation strategies. The study aims to complement existing tests to predict toxicity and prioritise the elimination/reduction of harmful degradation products of primary treatment procedures. The novelty of this study is that it streamlines in silico approaches to predict the nature of toxicity of degradation by-products of toxic industrial affluents like azo dyes. These approaches can assist the first phase of toxicology assessments for any pollutant for regulatory decision-making bodies to chalk out appropriate action plans for their remediation.


Assuntos
Rotas de Resultados Adversos , Relação Quantitativa Estrutura-Atividade , Protoporfirinogênio Oxidase/metabolismo , Mutagênicos/toxicidade , Compostos Azo/toxicidade , Corantes/toxicidade
18.
Spine J ; 23(7): 1079-1087, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36804435

RESUMO

BACKGROUND CONTEXT: Chromodiscography is an integral part of full-endoscopic discectomy (FED), comprising ordinary discography with radiopacity produced by contrast medium and intradiscal stain for visualizing annular defects in the endoscopic field. Nevertheless, concerns remain about the cytotoxicity of the stains used. The study of their staining efficacy is also lacking. PURPOSE: To evaluate the feasibility of methylene blue, patent blue, and indigo carmine for intradiscal injection, investigate the effectiveness of each dye, and define critical concentration with adequate staining efficacy and tolerable cytotoxicity for use in chromodiscography during FED. STUDY DESIGN: An experimental in vitro study. METHODS: Dye stock solutions were prepared from powder. The stock was diluted with culture medium or balanced saline and used for cytotoxicity or intervertebral disc staining assays, respectively. Bovine tails were obtained from the local slaughterhouse and functional spine units of intervertebral discs were acquired by transverse incision at the disc level. Each disc was punctured over the posterolateral aspect using a surgical knife to simulate an annular defect. The intradiscal injection was performed with each dye at different concentrations using a 22G needle from the contralateral aspect of the punctured site. Staining efficacy was quantified using ImageJ software. Primary cells of bovine tails were cultivated in each dye at different concentrations. Cytotoxicity was assessed 24 hours after stain exposure using the CCK-8 toxicity assay. RESULTS: Staining efficacy and cytotoxicity were proportional to the concentration of tested dyes. Lower limits of concentration producing significant staining efficacy of indigo carmine, methylene blue, and patent blue were 0.25 mg/mL, 0.25 mg/mL, and 0.05 mg/mL, respectively. Compared with controls, concentrations showing significant toxicity for indigo carmine, methylene blue, and patient blue were 1 mg/mL, 0.5 mg/mL, and 2.5 mg/mL, respectively. CONCLUSIONS: Patent blue can serve as a more suitable tissue stain than either indigo carmine or methylene blue due to the widest range of tradeoff concentration within 0.05 to 2.5 mg/mL. CLINICAL SIGNIFICANCE: Patent blue with the characteristic of good staining efficacy and lower cytotoxicity may be a promising option for chromodiscography during FED.


Assuntos
Índigo Carmim , Disco Intervertebral , Humanos , Animais , Bovinos , Índigo Carmim/farmacologia , Azul de Metileno/farmacologia , Corantes/toxicidade , Coloração e Rotulagem
19.
Environ Technol ; 44(17): 2648-2667, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35112994

RESUMO

Azo dyes are a significant class of hazardous chemicals that are extensively utilised in diverse industries. Industries that manufacture and consume reactive azo dyes generate hyper-saline wastewater. The ability of halotolerant bacteria to thrive under extreme environmental conditions thus makes them a potential candidate for reactive azo dye degradation. An efficient halotolerant bacterium (isolate SAIBP-6) with the capability to degrade 87.15% of azo dye Reactive Red 195 (RR-195) was isolated from sea sediment and identified as Halomonas meridiana SAIBP-6. Strain SAIBP-6 maintained potential decolourisation under a wide range of environmental conditions viz. 35-45°C temperature, 50-450 mg/L RR-195, pH 7-9, and 50-150 g/L NaCl. However, maximum decolourisation occurred at 40°C, 200 mg/L RR-195 dye, pH 9, and 50 g/L NaCl, under static conditions. Tyrosinase and azoreductase were responsible for dye degradation. The reaction catalysed by these enzymes followed zero-order kinetics. The maximum velocity (Vmax) of the enzymatic reaction was 4.221 mg/(L.h) and the Michaelis constant (Km) was 517.982 mg/L. Strain SAIBP-6 also efficiently decolourised Reactive Black-5 and Reactive Yellow-160 dye. The biodegradation process was further studied with the help of UV-Vis spectral scan, ultra-high performance liquid chromatography (UPLC), fourier-transform infra-red spectroscopy (FT-IR), and proton nuclear magnetic resonance (1H NMR) analysis. Finally, cytogenotoxicity assay conducted with the meristematic root tip cells of Allium cepa and phytotoxicity assay conducted with the seeds of Vigna mungo led to the inference that strain SAIBP-6 significantly reduced the toxicity of RR-195 after biodegradation.


Assuntos
Corantes , Cloreto de Sódio , Corantes/toxicidade , Corantes/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Biodegradação Ambiental , Compostos Azo/química , Sedimentos Geológicos
20.
Chem Res Toxicol ; 36(1): 104-111, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36584178

RESUMO

Tattoo application is widely performed all over the world; however, injection of coloring substances into the skin as metals may pose a risk for allergies and other skin inflammations and systemic diseases. In this context, tattoo inks in green, black, and red colors of three brands were purchased. Before starting the analysis, the acid mixture suitable for microwave burning was determined, and according to these results, the inks were digested with nitric acid, hydrochloric acid, and hydrofluoric acid. Then, method validation was performed for tattoo inks using inductively coupled plasma-mass spectrometry. The relative contribution of metals to the tattoo ink composition was highly variable between colors and brands. Elements found in the main components of inks are as follows (in mg kg-1): Al, 1191.1-3424.9; Co, 0.04-1.07; Cu, 1.24-2523.4; Fe, 16.98-318.42; Ni, 0.63-17.53; and Zn, 2.6-46.9. It has been determined by the Environmental Protection Agency that in some products, especially the copper element is above the determined limit. The analysis results obtained were classified by chemometric analysis, and the color and brand relationship were determined. More toxicological studies are necessary to understand the effects of tattoo inks containing heavy metals and/or organic components.


Assuntos
Metais Pesados , Tatuagem , Tinta , Tatuagem/efeitos adversos , Cobre , Corantes/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA